Outputs
译者:片刻小哥哥
项目地址:https://huggingface.apachecn.org/docs/diffusers/api/outputs
All models outputs are subclasses of BaseOutput , data structures containing all the information returned by the model. The outputs can also be used as tuples or dictionaries.
For example:
from diffusers import DDIMPipeline
pipeline = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32")
outputs = pipeline()
The
outputs
object is a
ImagePipelineOutput
which means it has an image attribute.
You can access each attribute as you normally would or with a keyword lookup, and if that attribute is not returned by the model, you will get
None
:
outputs.images
outputs["images"]
When considering the
outputs
object as a tuple, it only considers the attributes that don’t have
None
values.
For instance, retrieving an image by indexing into it returns the tuple
(outputs.images)
:
outputs[:1]
To check a specific pipeline or model output, refer to its corresponding API documentation.
BaseOutput
class
diffusers.utils.
BaseOutput
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/utils/outputs.py#L40)
(
)
Base class for all model outputs as dataclass. Has a
__getitem__
that allows indexing by integer or slice (like a
tuple) or strings (like a dictionary) that will ignore the
None
attributes. Otherwise behaves like a regular
Python dictionary.
You can’t unpack a
BaseOutput
directly. Use the
to_tuple()
method to convert it to a tuple
first.
to_tuple
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/utils/outputs.py#L126)
(
)
Convert self to a tuple containing all the attributes/keys that are not
None
.
ImagePipelineOutput
class
diffusers.
ImagePipelineOutput
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/pipeline_utils.py#L110)
(
images
: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]
)
Parameters
- images
(
List[PIL.Image.Image]
ornp.ndarray
) — List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
.
Output class for image pipelines.
FlaxImagePipelineOutput
class
diffusers.pipelines.pipeline_flax_utils.
FlaxImagePipelineOutput
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/pipeline_flax_utils.py#L88)
(
images
: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]
)
Parameters
- images
(
List[PIL.Image.Image]
ornp.ndarray
) — List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
.
Output class for image pipelines.
replace
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/flax/struct.py#L111)
(
**updates
)
“Returns a new object replacing the specified fields with new values.
AudioPipelineOutput
class
diffusers.
AudioPipelineOutput
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/pipeline_utils.py#L124)
(
audios
: ndarray
)
Parameters
- audios
(
np.ndarray
) — List of denoised audio samples of a NumPy array of shape(batch_size, num_channels, sample_rate)
.
Output class for audio pipelines.
ImageTextPipelineOutput
class
diffusers.
ImageTextPipelineOutput
[<
source
](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py#L34)
(
images
: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray, NoneType]
text
: typing.Union[typing.List[str], typing.List[typing.List[str]], NoneType]
)
Parameters
- images
(
List[PIL.Image.Image]
ornp.ndarray
) — List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
. - text
(
List[str]
orList[List[str]]
) — List of generated text strings of lengthbatch_size
or a list of list of strings whose outer list has lengthbatch_size
.
Output class for joint image-text pipelines.