跳转至

IPNDMScheduler

译者:片刻小哥哥

项目地址:https://huggingface.apachecn.org/docs/diffusers/api/schedulers/ipndm

原始地址:https://huggingface.co/docs/diffusers/api/schedulers/ipndm

IPNDMScheduler is a fourth-order Improved Pseudo Linear Multistep scheduler. The original implementation can be found at crowsonkb/v-diffusion-pytorch .

IPNDMScheduler

class

diffusers.

IPNDMScheduler

[<

source

](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/schedulers/scheduling_ipndm.py#L25)

(

num_train_timesteps

: int = 1000

trained_betas

: typing.Union[numpy.ndarray, typing.List[float], NoneType] = None

)

Parameters

  • num_train_timesteps ( int , defaults to 1000) — The number of diffusion steps to train the model.
  • trained_betas ( np.ndarray , optional ) — Pass an array of betas directly to the constructor to bypass beta_start and beta_end .

A fourth-order Improved Pseudo Linear Multistep scheduler.

This model inherits from SchedulerMixin and ConfigMixin . Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

scale_model_input

[<

source

](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/schedulers/scheduling_ipndm.py#L170)

(

sample

: FloatTensor

*args

**kwargs

)

export const metadata = 'undefined';

torch.FloatTensor

Parameters

  • sample ( torch.FloatTensor ) — The input sample.

Returns

export const metadata = 'undefined';

torch.FloatTensor

export const metadata = 'undefined';

A scaled input sample.

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

set_timesteps

[<

source

](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/schedulers/scheduling_ipndm.py#L67)

(

num_inference_steps

: int

device

: typing.Union[str, torch.device] = None

)

Parameters

  • num_inference_steps ( int ) — The number of diffusion steps used when generating samples with a pre-trained model.
  • device ( str or torch.device , optional ) — The device to which the timesteps should be moved to. If None , the timesteps are not moved.

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

step

[<

source

](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/schedulers/scheduling_ipndm.py#L112)

(

model_output

: FloatTensor

timestep

: int

sample

: FloatTensor

return_dict

: bool = True

)

export const metadata = 'undefined';

SchedulerOutput or tuple

Parameters

  • model_output ( torch.FloatTensor ) — The direct output from learned diffusion model.
  • timestep ( int ) — The current discrete timestep in the diffusion chain.
  • sample ( torch.FloatTensor ) — A current instance of a sample created by the diffusion process.
  • return_dict ( bool ) — Whether or not to return a SchedulerOutput or tuple.

Returns

export const metadata = 'undefined';

SchedulerOutput or tuple

export const metadata = 'undefined';

If return_dict is True , SchedulerOutput is returned, otherwise a tuple is returned where the first element is the sample tensor.

Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the linear multistep method. It performs one forward pass multiple times to approximate the solution.

SchedulerOutput

class

diffusers.schedulers.scheduling_utils.

SchedulerOutput

[<

source

](https://github.com/huggingface/diffusers/blob/v0.23.0/src/diffusers/schedulers/scheduling_utils.py#L50)

(

prev_sample

: FloatTensor

)

Parameters

  • prev_sample ( torch.FloatTensor of shape (batch_size, num_channels, height, width) for images) — Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

Base class for the output of a scheduler’s step function.



回到顶部